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Abstract: - The stability of spacecraft attitude is studied with considering sinusoidal disturbance. A passive 
attitude controller without angular velocity measurement for spacecraft described by quaternion is designed. 
The passive controller has no information related to system parameters. So it has robustness to model error and 
uncertainty of model parameters. The stability of spacecraft attitude control with considering external 
sinusoidal disturbance can be proved by applying Lyapunov approach and LaSalle Invariance Principle. 
Simulation results demonstrate the effectiveness of the designed attitude controller. 
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1 Introduction 
The attitude of spacecraft can be expressed by 
matrix, Euler angle, or quaternion. The method of 
matrix representation is complicated in calculation; 
Euler angle also exist some limitations. For example, 
the rotation matrix is not interchangeable, Euler 
angle rotation must be in a particular order, and 
equivalent to Euler angle change may not cause 
equal rotation, which leads to a rotating unevenness. 
When Euler angle is equal to 2/π± , there will be a 
singular point, leading to the loss of degrees of 
freedom, which is called as the phenomenon of 
gimbal lock. But expressing 3D rotation with 
quaternion can avoid these limitations, and also has 
clear geometric meaning and simple calculation. In 
the past few decades, scholars have been used 
different control methods based on quaternion 
representation to solve the attitude stabilization of 
spacecraft, such as robust control approach [1,2], 
Lyapunov-based approach [3-5], variable structure 
control approach [6-10], adaptive control approach 
[11,12]. 

Often, angular velocity and quaternion, are used 
to deal with the stabilization of feedback control. 
However, the angular velocity measurement is not 
necessary in some of the previous works. For 
example, in [7], a design criterion for a class of PD 
controllers was firstly proposed by using the 
Lyapunov-based approach, and then a design 
criterion of controller without angular velocity 
measurement was presented based on the passivity 
approach. The approach proposed in [7] was further 

extended to the system described by the Rodrigues 
and modified Rodrigues parameters [8]. 

The external disturbances, which inevitably 
affect the motion of spacecraft, are ignored in the 
above-mentioned literatures. This paper focuses on 
the issue of spacecraft attitude stabilization in the 
case of the bounded external disturbances. We use 
quaternion to represent the spacecraft attitude and 
design a passive attitude controller without angular 
velocity measurement. In addition, the designed 
controller does not contain information related to 
the system parameters, which makes it robust to the 
model error and the model parameter uncertainty. 
 
 
2 Mathematical Model of Spacecraft 
System 
2.1 Spacecraft attitude kinematics 
We use the unit quaternion to represent spacecraft 
attitude in order to avoid singularity. Define the unit 
quaternion as 
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where, 3ˆ Rn∈ is the rotation axis represented by unit 
vector, θ  is the rotation angular, 3Rq∈  and 

Rq ∈0 are the components of the unit quaternion, 
which subject to the following constraint: 

 12
0

T =+ qqq                             (2) 
The kinematic equation represented by the unit 

quaternion is given by 
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where, [ ]T321 ωωωω =  is the spacecraft angular 
velocity vector with respect to the inertial reference 
frame, expressed in the spacecraft body-fixed 
reference frame, I is the 3×3 unit matrix, ×q  is the 
skew symmetric matrix which is defined by Eq.(4).      
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2.2 Spacecraft attitude dynamics 
The dynamic model of the spacecraft attitude 
control system is described by the differential 
equation in Eq.(5). 

duJJ ++−= × ωωω                      (5) 
where, 33T ×∈= RJJ  is the inertia matrix which is a 
symmetric and positive define matrix, 3Ru∈  is the 
vector of control torque, [ ]T321 dddd =  is the vector 
of external disturbance. 

Assuming that d  is sinusoidal disturbance and 
satisfies the following condition. 

02 =+ dd γ                             (6) 
where, },,{diag 321 γγγγ =  is the disturbance 
frequency matrix. 
 
 
3 Passive Attitude Control without 
Angular Velocity Measurement 
3.1 Attitude control without considering 
external disturbance 
In [7], a passive controller without angular velocity 
measurement was proposed. Along the line of [7], 
we construct a controller as follows. 
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where, k is a positive constant, B is a full rank 
matrix, },,diag{ 321 cccC = and },,diag{ 321 fffF =  are 
the symmetric positive definite gain matrices, )(qE  
is the Jacobian, which satisfies the following 
property. 

 ×+= qIqqE 0)(                       (8) 
There exist positive definite matrices P and Q 

such that 

QPAPA −=+T                      (9) 
The symbolic function )sgn( 0q  is defined by 
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For attitude stabilization control, T]0,0,0,1[±=q  
is the stable equilibrium of system when ω is zero, 
since q and -q represent the same attitude. In fact, 
the equilibrium tended to is related to the initial 
symbol of q0. The different the initial symbol of q0, 
the different the control law. Therefore, consider the 
following Lyapunov function candidate 
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Using Eqs.(3), (5), (7) and (9), the time 
derivative of V can be computed to be 
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The Lyapunov function candidate V is positive 
definite and radially unbounded from Eq.(12). And 
V  is less than or equal to zero in the whole state 
space. By the LaSalle Invariance Principle [13], all 
trajectories converge to the largest invariant set 

}0:),,{(}0:),,{( ==== xxqVxq  ωωψ . On the 
invariant set we have that 0T == xPBy  , 

0==+ xBCqAx   from Eq.(5). Since 0=x , then 
0==+ xqBCxA  , namely 0=qBC  . The matrices 

B and C are reversible and Eq.(2), 
therefore 00 =+ qq  . It is clear that 00 =q . From 
Eq.(3), 0=ω  in the invariant set implies 0=ω . 
And it can be obtained that uJJ +−= × ωωω  (d=0) 
or 0=+= × ωωω JJu   from Eq.(5). From Eq.(7), we 
have that  FqECyqEqqqku TT

00 )(])[sgn( −−−−= . 
That is  

0])[sgn( T
00 =−−− FqEqqqk         (13) 

Both sides of Eq.(13) is multiplied by Tq , we 
have that 0)(])[sgn( 0

TT
00 =−−−− × FqqIqqqqqqk . 

Then the above equation can be simplified as 
0])[sgn( T

0
T

00 =−−− Fqqqqqqqk . That is  
{ } 0])[sgn( 000

T =+− qFqIqqkq         (14) 
Therefore, 0])[sgn( 000 =+− ifqqqk (i=1,2,3), 

q=0 and x=0. The largest invariant set is 
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}0,0,0:),,{( ==== xqxq ωωψ , which corresponds 
to the desired equilibrium. The designed control law 
can guarantee that the closed-loop system tends to 
the globally asymptotically stable equilibrium. 
 
3.2 Attitude control with considering 
external disturbance 
The stability of spacecraft is analyzed in the small 
area of equilibrium (|q0|=1, q=0) when there exists 
the external disturbance. The controller is 
constructed as follows. 
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where, },,{diag 321 gggG =  is the symmetric and 
positive define matrix, β  is a new incoming 
variable. 

And the following condition is satisfied.  
q=+ βγβ 2              (16) 

The control law u includes two parts. 
FqECyqEqqqk TT

00 )(])[sgn( −−−−  is the passive 
control part, which can guarantee that the system 
achieves global asymptotic stable to the equilibrium 
point. αGET  is the suppress vector, which can 
suppress the sinusoidal disturbance. 

Consider the following Lyapunov function 
candidate 
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Using Eqs.(3), (5) and (17), the time derivative 
of V can be computed to be 
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It can be known that the Lyapunov function 
candidate V is positive definite and radially 
unbounded. And V  is less than or equal to zero in 
the whole state space. By the LaSalle Invariance 
Principle, all trajectories converge to the largest 
invariant set }0:),,,{(}0:),,,{( ==== xxqVxq  βωβωψ . 
On the invariant set we have that 0T == xPBy  , 

0==+ xBCqAx   from Eq.(15). So 0==+ xqBCxA  , 
namely 0=qBC  . The matrices B and C are 
reversible and Eq.(2), therefore 00 =+ qq  . It is clear 
that 00 =q . From Eq.(3), 0=ω  in the invariant set 
implies 0=ω . And it can be obtained that 

duJJ ++−= × ωωω or 0=+=+ × ωωω JJdu   from 
Eq.(5). From Eq.(15), we have that 

0)(])[sgn( TTT
00 =+−−−−− dGEFqECyqEqqqk α . 

That is  
0])sgn([])[sgn( 1
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Then the above equation can be simplified as  
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Differentiate Eq.(19), then 0=β , which is in the 
invariant set, so 0=β . According to Eq.(16), we 
know  

q=βγ 2                                  (20) 
Substituting Eq.( 20) into Eq.( 19), we have 
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2, 3), q=0 and x=0. The largest invariant set 
is }0,0,0,0:),,,{( ===== βωβωψ xqxq , 
which corresponds to the desired equilibrium. The 
designed control law can guarantee that the closed-
loop system tends to the globally asymptotically 
stable equilibrium and suppress the effect of 
external disturbance. Therefore the spacecraft 
attitude achieves stabilization. 
 
 
4 Simulations and Results 
In order to demonstrate the effectiveness of the 
designed attitude controller, several numerical 
simulations are presented in this section. 

A spacecraft with the following inertia matrix is 

considered: )m(kg
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9659.0)0(0 −=q . At this time, yaw angle, roll angle 
and pitch angle are 23.56º, 17.21º and 4.98º, 
respectively. 

Simulations are carried out in the following cases. 
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(2) Consider 















=

7.000
035.00
001.0

G  and 
6
πθ = . 

The value of )0(0q  is changed to 0.9695 and other 
parameters remain unchanged. And the simulation 
result is shown in Fig. 5. 
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Fig.1 The angular velocity curve without suppress 

of external disturbance 
 

 
Fig.2 The quaternion curve without suppress of 

external disturbance 
 

 
Fig.3 The angular velocity curve with suppress of 

external disturbance 
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Fig.4 The quaternion curve with suppress of 

external disturbance 
 

 
Fig.5 The q0 curve with different initial value of q0 

 
 

 
Fig.6 The angular velocity curve with the existence 

of model error and model parameter uncertainty 
 
The observation from Figs.1-2 is that the 

designed passive controller without angular velocity 
measurement can make the closed-loop system 
described by Eqs.(3), (5) and (15) stable near the 

equilibrium point and suppress the effect of external 
disturbance. By comparing Fig.1 with Fig.3 and 
comparing Fig.2 with Fig.4, it can be seen that the 
closed-loop system without the suppression vector 
of external disturbance is greatly affected by the 
external disturbance and can not converge to the 
equilibrium point and be not any more stable. 
However, the closed-loop system with the 
suppression vector of external disturbance can 
converge fastly to the equilibrium point. Fig.5 
shows that the equilibrium tended to is related to the 
initial symbol of q0. When there exist model error 
and model parameter uncertainty, the performance 
of the closed-loop system under the control torque is 
given in Fig.6. Obviously, the system can be still 
stable at equilibrium point. It shows that the 
designed controller is robust to model error and 
model parameter uncertainty. 

 
 
5 Conclusion 
We considered the problem of spacecraft attitude 
stabilization with the existence of external 
disturbances and uncertain inertia in this paper. A 
passive attitude controller is designed, which 
introduces the suppression vector of external 
disturbance into the control law. The designed 
controller does not need the angular velocity 
measurement and can suppress the effect of external 
disturbance to a certain extent. In addition, the 
control law doesn’t contain information related to 
the system parameters, which makes the attitude 
control system robust to model error and model 
parameter uncertainty. 
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